극점 (복소해석학)

(극 (복소해석학)에서 넘어옴)

복소해석학에서 극점(極點, 영어: pole)은 국소적으로 에서 갖는 특이점과 같은 형태의 특이점이다.

감마 함수의 절댓값. 감마 함수는 음의 정수에서 일련의 극점들을 갖는다.

정의

편집

 가 복소평면의 열린 부분집합이라고 하고, 정칙함수  가 주어졌다고 하자. 정수  에 대하여,   에서 제거 가능 특이점을 갖는지 여부를 생각할 수 있다. 즉 정칙함수  가 존재하여, 모든  에서  이게 될 수 있는지 여부이다. 만약 위 성질을 만족시키는 최소의  가 양의 정수라면,   에서 극점을 갖는다고 한다. 이 경우, 위 성질을 만족시키는 최소의 양의 정수  를 극점  계수(영어: order)라고 한다.

계수가 1인 극점을 단순극(單純極, 영어: simple pole)이라고 한다.

같이 보기

편집

외부 링크

편집