측도론에서 르베그 측도(영어: Lebesgue measure)는 유클리드 공간의 부분 집합에 길이, 넓이 또는 부피를 할당하는 방법이다. 이를 사용하여 르베그 적분을 정의할 수 있다.

정의

편집

르베그 측도는 유클리드 공간   위에 정의되는 측도이며, 보렐 측도완비화이다.

구체적으로, 이는 다음과 같다.   위의 르베그 측도는   위의 르베그 측도의 곱측도로 정의할 수 있으므로,   위의 측도를 정의하는 것으로 족하다.   위의 르베그 외측도  는 다음과 같다.

 

르베그 가측 집합은 다음 성질을 만족시키는 집합  이다.

  • 모든  에 대하여,  

르베그 가측 집합의 집합  시그마 대수를 이룸을 보일 수 있다.   위의 르베그 측도  는 르베그 가측집합에 국한시킨 르베그 외측도이며,  측도 공간을 이룸을 보일 수 있다.

성질

편집

 차원 유클리드 공간에 대해, 르베그 측도  는 다음의 성질을 만족한다.

  • 모든 보렐 집합은 르베그 가측 집합이다.
  • 르베그 측도는 완비 측도이다. 즉, 어떤 집합이 르베그 가측 집합이며 측도가 0이면, 그 부분집합 또한 가측 집합이다.
  • (이동 불변성 영어: translation invariance) 임의의 르베그 가측 집합  와 벡터  에 대해,   역시 가측 집합이며  와 같은 측도를 갖는다.

르베그 가측 집합

편집

비탈리 정리에 따르면 선택 공리를 가정할 경우 모든 집합의 르베그 측도를 할당하는 것은 불가능하다. 르베그 측정이 불가능한 집합은 바나흐-타르스키 역설 등의 결과를 가져온다. 비탈리 집합은 르베그 측정이 불가능한 집합의 한 예이다. 반면, 결정 공리를 사용할 경우에는 실수의 부분집합은 모두 측정가능하다는 것을 증명할 수 있다.

선택 공리를 가정하자. 유클리드 공간의 르베그 가측 집합의 수는  이지만, 보렐 집합의 수는  이다. 즉, 거의 모든 르베그 가측 집합은 보렐 집합이 아니다.

모든 르베그 가측 집합  은 다음과 같이 나타낼 수 있다.

 

여기서

선분, 사각형 등의 도형에 대한 르베그 측도는 길이나 넓이 등의 개념과 일치한다. 예를 들어, 구간  의 측도는 길이와 같은 1이다.

칸토어 집합은 크기가  이지만 르베그 측도가 0이다.

같이 보기

편집

외부 링크

편집