리 대수 반직접합

리 대수 이론에서, 반직접합(半直接合, 영어: semidirect sum)은 두 리 대수의 직합 위에 정의되는 리 대수 구조이다. 이는 리 군반직접곱의 무한소 형태로 생각할 수 있다. 추상적으로, 리 대수의 범주는 아벨 범주를 이루지 못하므로, 직합이 아닌 반직접합이 존재한다.

정의

편집

다음과 같은 데이터가 주어졌다고 하자.

  • 가환환  
  •   위의 두 리 대수  ,  
  • 리 대수 준동형  
    • 여기서  미분 리 대수이다.

그렇다면,  -가군   위에 다음과 같은 리 대수 구조를 정의하자.

 
 
 

이를    에 대한 반직접합이라고 하며,  로 표기한다. 만약  상수 함수 0이라면, 이는 리 대수의 직합과 같다.

성질

편집

군의 반직접곱과 마찬가지로, 리 대수의 반직접합에 대하여 분할 완전열

 

이 존재한다. 즉,   리 대수 아이디얼을 이룬다.

반대로, 리 대수의 짧은 완전열

 

가 주어졌을 때, 만약 이 완전열이 오른쪽 분할 완전열이라면 (즉,  가 되는 리 대수 준동형  가 존재한다면), 이를 통해

 

로 표현할 수 있다.

리 군과의 관계

편집

리 군  ,  이 주어졌으며,    위에 매끄럽게 작용한다고 하자.

 

이는 자연스럽게 리 대수 준동형

 

을 정의한다.

그렇다면, 이를 통해 반직접곱 리 군  를 정의할 수 있다. 이 경우, 표준적으로 다음과 같은 리 대수 동형이 존재한다.

 

즉, 반직접곱리 대수는 리 대수의 반직접합이다.

참고 문헌

편집

외부 링크

편집