모노드로미
수학에서 모노드로미(영어: monodromy)는 피복 공간이 특이점 주변에서 보이는 구조를 나타내는 수학적 대상이다.
정의
편집가 연결 국소 연결 공간이라고 하자. 가 의 피복 공간이라고 하자. 또한, 에 대하여 가 그 올(fiber)이라고 하자.
폐곡선 가 에서 시작하고 끝난다고 하자. 즉, 이다. 그렇다면 이 폐곡선을 피복 공간으로 올려(lift) 를 생각할 수 있다. 이 곡선은 더 이상 일반적으로 폐곡선이 아니다. 가 에서 시작하여 에 끝난다고 하자. 이에 따라, 이를 기본군 의 에 대한 군의 작용으로 생각할 수 있다. 이 작용을 모노드로미 작용(monodromy action)이라고 하며, 군 준동형 의 상을 모노드로미 군(monodromy group)이라고 한다.
예
편집모노드로미는 복소해석학에서 중요한 역할을 한다. 예를 들어, 복소 로그 를 원점을 한 번 도는 폐곡선을 따라 해석적 연속을 통하여 연장하면, 시작한 점에서 만큼 다른 값을 얻는다. 복소 로그를 꼴의 피복 공간으로 생각하면, 에 대응하는 올은 이다. 의 기본군은 그 감음수로 나타내어지는 이므로, 그 모노드로미 작용은 임을 알 수 있고, 그 모노드로미 군은 이다.
같이 보기
편집외부 링크
편집- “Monodromy group”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Monodromy theorem”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Monodromy transformation”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Monodromy group”. 《Wolfram MathWorld》 (영어). Wolfram Research.
- Weisstein, Eric Wolfgang. “Monodromy theorem”. 《Wolfram MathWorld》 (영어). Wolfram Research.
- 이철희. “맴돌이군과 미분방정식”. 《수학노트》.
- 이철희. “맴돌이군이 유한인 초기하 미분방정식에 대한 슈바르츠 목록”. 《수학노트》.