정의

편집

수학에서 집합   상의 임의의 두 원소 a, b에 대하여 정의된 이항관계  반대칭관계(反對稱關係, antisymmetric relation)라 함은  이고  이면  를 만족한다는 뜻이다. 수학적으로 다시 쓰면 다음과 같다.

 

예제

편집

예를 들어 aRb가 'a 는  b 와 관계가 있다'라는 이항관계이면 R 은 대칭관계이지만. 반대칭관계는 아니다. 그러나 R 을 '작거나 같다'로 정의하면 이것은 반대칭관계이다.

반대칭관계와 대칭관계

편집

반대칭관계를 '대칭관계의 반대'로 혼동하기 쉽지만, 이는 사실이 아니다. 어떤 이항관계 R은 다음과 같은 네 가지 모든 경우에 해당할 수 있다.

  • 반대칭관계이며 대칭관계인 경우: R같다를 나타내는 경우.
  • 반대칭관계이지만 대칭관계는 아닌 경우: R작거나 같다라고 하자.
    •  이고  이면   이므로 R은 반대칭관계이다.
    • 그러나  라고  인 것은 아니므로 대칭관계는 아니다.
  • 반대칭관계는 아니지만 대칭관계인 경우: R 을 법(法, modulus)으로 하는 합동(合同, congruent)이라고 하자.
    •  이면  이므로 R은 대칭관계이다.
    •  이고  이지만 3=7은 아니므로 반대칭관계가 아니라는 반례가 된다.
  • 반대칭관계도 아니고 대칭관계도 아닌 경우:  정수  에 대하여   나눈다는 것을 나타낸다고 하자.
    •  이고  이지만  은 아니므로 반대칭관계가 아니라는 반례가 된다.
    •  이지만  은 아니므로 대칭관계가 아니라는 반례가 된다.

비대칭관계

편집

반대칭관계는 비대칭관계(非對稱關係, asymmetric relation)와 혼동하기 쉬운데, 이 두 개념은 엄밀히 다른 개념이다. 비대칭관계는 집합  와 여기에 속하는 임의의 두 원소 a, b에 대하여 정의된 이항관계  이 있을 때  이면  가 아닌 것이다. 수학적으로 다시 쓰면 다음과 같다.

 

이항관계 R 이 비대칭관계라는 것은 R이 반대칭관계이고 비반사관계라는 것과 동치이다.