사용자:RyuaTS/연습장
이 문서의 내용은 출처가 분명하지 않습니다. |
이 문서에는 [[:{{{1}}}:|언어 오류({{{1}}}) 위키백과]]에 있는 [[:{{{1}}}:{{{2}}}|{{{2}}}]] 문서에서 번역한 내용이 포함되어 있습니다. 원문을 작성한 기여자의 목록을 보려면 [{{전체주소:{{{1}}}:{{{2}}}|action=history}} 문서 역사]를 확인하십시오. |
이 문서는 다른 언어판 위키백과의 문서([[:문서 이름을 삽입하세요.]])를 번역 중이며, 한국어로 좀 더 다듬어져야 합니다. |
항공이란 항공기의 설계로부터 개발, 제조, 이용에 이르기까지 항공술의 실용적인 측면을 다루 항공(航空)이란 항공기 등의 기계장치의 설계로부터 개발, 생산, 이용에 이르는 항공술의 실용 형태이다.
역사
편집초창기
편집여러 고문헌에서 인간이 과거에 하늘을 날 수 있었다는 언급을 찾아볼 수 있다. 그리스에 전해 내려오는 이카로스 이야기와 페르시아의 잠시드와 같은 신화 속에서 하늘을 날 수 있는 인간이 묘사되었으며, 그 이후로 아르키타스의 비둘기와 같이 무인기같은 구체적인 형태의 사료가 발견되었다. 또한 이슬람의 과학사에서 공학자 압바스 이븐 피르나스(Abbas ibn Finas)가 국가의 지원을 받아 공식적으로 비행술을 연구했다는 언급을 볼 수 있고, 이에 영감을 받은 엘리머(Eilmer of Malmesbury)가 글라이더를 만들어 200m를 비행했다는 기록이 남아 있다.
http://kevin0960.tistory.com/entry/%EC%95%84-%EB%82%A0%EA%B3%A0-%EC%8B%B6%EB%8B%A4-%EC%A0%80-%ED%91%B8%EB%A5%B8-%ED%95%98%EB%8A%98%EB%A1%9C ko.wiki.x.io/과학사
There are early legends of human flight such as the story of Icarus in Greek th and Jamshid in Persian myth, and later, somewhat more credible claims of short-distance human flights appear, such as the flying automaton of Archytas of Tarentum (428–347 BC),[1] the winged flights of Abbas Ibn Firnas (810–887), Eilmer of Malmesbury (11th century), and the hot-air Passarola of Bartolomeu Lourenço de Gusmão (1685–1724).
Lighter than air
편집The modern age of aviation began with the first untethered human lighter-than-air flight on November 21, 1783 of a hot air balloon designed by the Montgolfier brothers. The practicality of balloons was limited because they could only travel downwind. It was immediately recognized that a steerable, or dirigible, balloon was required. Jean-Pierre Blanchard flew the first human-powered dirigible in 1784 and crossed the English Channel in one in 1785.
Rigid airships became the first aircraft to transport passengers and cargo over great distances. The best known aircraft of this type were manufactured by the German Zeppelin company.
The most successful Zeppelin was the Graf Zeppelin. It flew over one million miles, including an around-the-world flight in August 1929. However, the dominance of the Zeppelins over the airplanes of that period, which had a range of only a few hundred miles, was diminishing as airplane design advanced. The "Golden Age" of the airships ended on May 6, 1937 when the Hindenburg caught fire, killing 36 people. The cause of the Hindenburg accident was initially blamed on the use of hydrogen instead of helium as the lift gas. An internal investigation by the manufacturer revealed the coating used to protect the covering material over the frame was highly flammable and allowed static electricity to build up in the airship.[2] Changes to the coating formulation reduced the risk of further Hindenburg type accidents.Although there have been periodic initiatives to revive their use, airships have seen only niche application since that time.
Heavier than air
편집In 1799 Sir George Cayley set forth the concept of the modern airplane as a fixed-wing flying machine with separate systems for lift, propulsion, and control.[3][4] Early dirigible developments included machine-powered propulsion (Henri Giffard, 1852), rigid frames (David Schwarz, 1896) and improved speed and maneuverability (Alberto Santos-Dumont, 1901)
There are many competing claims for the earliest powered, heavier-than-air flight. The first recorded powered flight was carried out by Clément Ader on October 9, 1890 when he reportedly made the first manned, powered, heavier-than-air flight of a significant distance (50 m (160 ft)) but insignificant altitude from level ground in his bat-winged, fully self-propelled fixed-wing aircraft, the Ader Éole.[5][6][7] Seven years later, on 14 October 1897, Ader's Avion III was tested without success in front of two officials from the French War ministry. The report on the trials was not publicized until 1910, as they had been a military secret. In November 1906 Ader claimed to have made a successful flight on 14 October 1897, achieving an "uninterupted flight" of around 300 metres (985 ft) on . Although widely believed at the time, these claims were later discredited.[8][9]
However, the most widely accepted date is December 17, 1903 by the Wright brothers. The Wright brothers were the first to fly in a powered and controlled aircraft. Previous flights were gliders (control but no power) or free flight (power but no control), but the Wright brothers combined both, setting the new standard in aviation records. Following this, the widespread adoption of ailerons rather than wing warping made aircraft much easier to control, and only a decade later, at the start of World War I, heavier-than-air powered aircraft had become practical for reconnaissance, artillery spotting, and even attacks against ground positions.
Aircraft began to transport people and cargo as designs grew larger and more reliable. The Wright brothers took aloft the first passenger, Charles Furnas, one of their mechanics, on May 14, 1908.[10][11]
During the 1920s and 1930s great progress was made in the field of aviation, including the first transatlantic flight of Alcock and Brown in 1919, Charles Lindbergh's solo transatlantic flight in 1927, and Charles Kingsford Smith's transpacific flight the following year. One of the most successful designs of this period was the Douglas DC-3, which became the first airliner to be profitable carrying passengers exclusively, starting the modern era of passenger airline service. By the beginning of World War II, many towns and cities had built airports, and there were numerous qualified pilots available. The war brought many innovations to aviation, including the first jet aircraft and the first liquid-fueled rockets.
After World War II, especially in North America, there was a boom in general aviation, both private and commercial, as thousands of pilots were released from military service and many inexpensive war-surplus transport and training aircraft became available. Manufacturers such as Cessna, Piper, and Beechcraft expanded production to provide light aircraft for the new middle-class market.
By the 1950s, the development of civil jets grew, beginning with the de Havilland Comet, though the first widely used passenger jet was the Boeing 707, because it was much more economical than other aircraft at that time. At the same time, turboprop propulsion began to appear for smaller commuter planes, making it possible to serve small-volume routes in a much wider range of weather conditions.
Since the 1960s composite material airframes and quieter, more efficient engines have become available, and Concorde provided supersonic passenger service for more than two decades, but the most important lasting innovations have taken place in instrumentation and control. The arrival of solid-state electronics, the Global Positioning System, satellite communications, and increasingly small and powerful computers and LED displays, have dramatically changed the cockpits of airliners and, increasingly, of smaller aircraft as well. Pilots can navigate much more accurately and view terrain, obstructions, and other nearby aircraft on a map or through synthetic vision, even at night or in low visibility.
On June 21, 2004, SpaceShipOne became the first privately funded aircraft to make a spaceflight, opening the possibility of an aviation market capable of leaving the Earth's atmosphere. Meanwhile, flying prototypes of aircraft powered by alternative fuels, such as ethanol, electricity, and even solar energy, are becoming more common.
Operations of aircraft
편집Civil aviation
편집Civil aviation includes all non-military flying, both general aviation and scheduled air transport.
Air transport
편집There are five major manufacturers of civil transport aircraft (in alphabetical order):
- Airbus, based in Europe
- Boeing, based in the United States
- Bombardier, based in Canada
- Embraer, based in Brazil
- United Aircraft Corporation, based in Russia
Boeing, Airbus, Ilyushin and Tupolev concentrate on wide-body and narrow-body jet airliners, while Bombardier, Embraer and Sukhoi concentrate on regional airliners. Large networks of specialized parts suppliers from around the world support these manufacturers, who sometimes provide only the initial design and final assembly in their own plants. The Chinese ACAC consortium will also soon enter the civil transport market with its ACAC ARJ21 regional jet.[12]
Until the 1970s, most major airlines were flag carriers, sponsored by their governments and heavily protected from competition. Since then, open skies agreements have resulted in increased competition and choice for consumers, coupled with falling prices for airlines. The combination of high fuel prices, low fares, high salaries, and crises such as the September 11, 2001 attacks and the SARS epidemic have driven many older airlines to government-bailouts, bankruptcy or mergers. At the same time, low-cost carriers such as Ryanair, Southwest and Westjet have flourished.
General aviation
편집General aviation includes all non-scheduled civil flying, both private and commercial. General aviation may include business flights, air charter, private aviation, flight training, ballooning, parachuting, gliding, hang gliding, aerial photography, foot-launched powered hang gliders, air ambulance, crop dusting, charter flights, traffic reporting, police air patrols and forest fire fighting.
Each country regulates aviation differently, but general aviation usually falls under different regulations depending on whether it is private or commercial and on the type of equipment involved.
Many small aircraft manufacturers serve the general aviation market, with a focus on private aviation and flight training.
The most important recent developments for small aircraft (which form the bulk of the GA fleet) have been the introduction of advanced avionics (including GPS) that were formerly found only in large airliners, and the introduction of composite materials to make small aircraft lighter and faster. Ultralight and homebuilt aircraft have also become increasingly popular for recreational use, since in most countries that allow private aviation, they are much less expensive and less heavily regulated than certified aircraft.
The largest aircraft to be built, to date, is the Antonov An-225. This aircraft comes from the Ukraine, and it was built back in the 1980s. This aircraft includes 6 engines, mounted on the wing. Its wingspan is 88 metres (289 feet) and it is 84 metres long (276 feet). This aircraft holds the world payload record, after it transported 428,834 pounds worth of goods. Weighing in at 1.4 million pounds, it is also the heaviest aircraft to be built.[13]
Military aviation
편집Simple balloons were used as surveillance aircraft as early as the 18th century. Over the years, military aircraft have been built to meet ever increasing capability requirements. Manufacturers of military aircraft compete for contracts to supply their government's arsenal. Aircraft are selected based on factors like cost, performance, and the speed of production.
Types of military aviation
편집- Fighter aircraft's primary function is to destroy other aircraft. (e.g. Sopwith Camel, A6M Zero, F-15, MiG-29, Su-27, and F-22).
- Ground attack aircraft are used against tactical earth-bound targets. (e.g. Junkers Stuka, A-10, Il-2, J-22 Orao, AH-64 and Su-25).
- Bombers are generally used against more strategic targets, such as factories and oil fields. (e.g. Zeppelin, Tu-95, Mirage IV, and B-52).
- Transport aircraft are used to transport hardware and personnel. (e.g. C-17 Globemaster III, C-130 Hercules and Mil Mi-26).
- Surveillance and reconnaissance aircraft obtain information about enemy forces. (e.g. Rumpler Taube, Mosquito, U-2, OH-58 and MiG-25R).
- Unmanned aerial vehicles (UAVs) are used primarily as reconnaissance fixed-wing aircraft, though many also carry payloads. Cargo aircraft are in development. (e.g. RQ-7B Shadow, MQ-8 Fire Scout, and MQ-1C Gray Eagle).
- Missiles deliver warheads, normally explosives, but also things like leaflets.
Air safety
편집이 문단은 아직 미완성입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |
Aviation accidents and incidents
편집An aviation accident is defined by the Convention on International Civil Aviation Annex 13 as an occurrence associated with the operation of an aircraft which takes place between the time any person boards the aircraft with the intention of flight until such time as all such persons have disembarked, in which a person is fatally or seriously injured, the aircraft sustains damage or structural failure or the aircraft is missing or is completely inaccessible.[14]
The first fatal aviation accident occurred in a Wright Model A aircraft at Fort Myer, Virginia, USA, on September 17, 1908, resulting in injury to the pilot, Orville Wright and death of the passenger, Signal Corps Lieutenant Thomas Selfridge.[15]
An aviation incident is defined as an occurrence, other than an accident, associated with the operation of an aircraft that affects or could affect the safety of operations.[16]
An accident in which the damage to the aircraft is such that it must be written off, or in which the plane is destroyed is called a hull loss accident.[16]
Air traffic control
편집Air traffic control (ATC) involves communication with aircraft to help maintain separation — that is, they ensure that aircraft are sufficiently far enough apart horizontally or vertically for no risk of collision. Controllers may co-ordinate position reports provided by pilots, or in high traffic areas (such as the United States) they may use radar to see aircraft positions.
There are generally four different types of ATC:
- center controllers, who control aircraft en route between airports
- control towers (including tower, ground control, clearance delivery, and other services), which control aircraft within a small distance (typically 10–15 km horizontal, and 1,000 m vertical) of an airport.
- oceanic controllers, who control aircraft over international waters between continents, generally without radar service.
- terminal controllers, who control aircraft in a wider area (typically 50–80 km) around busy airports.
ATC is especially important for aircraft flying under instrument flight rules (IFR), where they may be in weather conditions that do not allow the pilots to see other aircraft. However, in very high-traffic areas, especially near major airports, aircraft flying under visual flight rules (VFR) are also required to follow instructions from ATC.
In addition to separation from other aircraft, ATC may provide weather advisories, terrain separation, navigation assistance, and other services to pilots, depending on their workload.
ATC do not control all flights. The majority of VFR flights in North America are not required to talk to ATC (unless they are passing through a busy terminal area or using a major airport), and in many areas, such as northern Canada and low altitude in northern Scotland, Air traffic control services are not available even for IFR flights at lower altitudes.
Environmental impact
편집Like all activities involving combustion, operating powered aircraft (from airliners to hot air balloons) release soot and other pollutants into the atmosphere. Greenhouse gases such as carbon dioxide (CO2) are also produced. In addition, there are environmental impacts specific to aviation:
- Aircraft operating at high altitudes near the tropopause (mainly large jet airliners) emit aerosols and leave contrails, both of which can increase cirrus cloud formation — cloud cover may have increased by up to 0.2% since the birth of aviation.[17]
- Aircraft operating at high altitudes near the tropopause can also release chemicals that interact with greenhouse gases at those altitudes, particularly nitrogen compounds, which interact with ozone, increasing ozone concentrations.[18][19]
- Most light piston aircraft burn avgas, which contains tetraethyllead (TEL). Some lower-compression piston engines can operate on unleaded mogas, and turbine engines and diesel engines — neither of which requires lead — are appearing on some newer light aircraft.
See also
편집Notes
편집- ↑ "Aviation: Reaching for the Sky". Don Berliner (1996). The Oliver Press, Inc. p.28. ISBN 1-881508-33-1
- ↑ De Angelis, Gina (2001). 《The Hindenburg》. Philadelphia: Chelsea House Publishers. 87–101쪽. ISBN 0-7910-5272-9.
- ↑ “Aviation History”. 2009년 7월 26일에 확인함.
- ↑ “Sir George Carley (British Inventor and Scientist)”. Britannica. 2009년 7월 26일에 확인함.
English pioneer of aerial navigation and aeronautical engineering and designer of the first successful glider to carry a human being aloft.
- ↑ Encyclopedia Britannica : Clément Ader
- ↑ Carroll Gray, "Clement Ader 1841 – 1925"
- ↑ European Aeronautic Defence and Space Company EADS N.V.: Eole/Clément Ader"
- ↑ Gibbs-Smith, C. H., Aviation. London, NMSO 2003, p. 75.
- ↑ L'homme, l'air et l'espace, p. 96
- ↑ Tom D. Crouch (2008년 8월 29일). “1908: The Year the Airplane Went Public”. Air & Space/Smithsonian. 2012년 8월 21일에 확인함.
- ↑ “This Month in Exploration: May”. NASA. 2012년 8월 21일에 확인함.
- ↑ Kingsbury, Kathleen (2007년 10월 11일). “Eyes on the Skies”. 《Time》. 2010년 4월 26일에 확인함.
- ↑ http://biggeststuff.com/biggest-aircraft-in-the-world/
- ↑ The Investigation Process Research Resource Site. “International Investigation Standards”. 2012년 5월 7일에 확인함.
- ↑ About.com Inventors. “Wright Brothers – First Fatal Airplane Crash in 1908”. 2012년 5월 7일에 확인함.
- ↑ 가 나 AirSafe.com. “Definitions of Key Terms Used by AirSafe.com”. 2012년 5월 7일에 확인함.
- ↑ Aviation and the Global Atmosphere (IPCC)
- ↑ Lin, X.; Trainer, M. & Liu, S.C. (1988). “On the nonlinearity of the tropospheric ozone production”. 《Journal of Geophysical Research》 93 (D12): 15879–15888. Bibcode:1988JGR....9315879L. doi:10.1029/JD093iD12p15879.
- ↑ Grewe, V.; D. Brunner; M. Dameris; J. L. Grenfell; R. Hein; D. Shindell; J. Staehelin (July 2001). “Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes”. 《Atmospheric Environment》 35 (20): 3421–3433. doi:10.1016/S1352-2310(01)00134-0. 2007년 11월 20일에 확인함.
External links
편집- 위키여행에 Flying 관련 여행 안내가 있습니다.
- 위키미디어 공용에 RyuaTS/연습장 관련 미디어 분류가 있습니다.
- 위키배움터에 Aviation 관련 자료가 있습니다.
- 위키낱말사전에 aviation 관련 글이 있습니다.