오일러-마스케로니 상수
정수론에서 오일러-마스케로니 상수(-常數, 영어: Euler–Mascheroni constant)는 조화급수를 자연 로그로 근사한 경우의 오차를 나타내는 수학 상수이다. 줄여서 오일러 상수라고도 불리나, 자연로그의 밑에 해당하는 오일러 수 e=2.718…과는 다르다.
정의
편집오일러-마스케로니 상수 는 다음과 같은 극한으로 정의된다.
그 값은 다음과 같다. (OEIS의 수열 A001620)
- 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 …
역사
편집스위스의 수학자 레온하르트 오일러가 1734년에 〈조화급수에 대한 고찰〉(라틴어: De Progressionibus harmonicis observationes)이라는 논문에서 오늘날 오일러-마스케로니 상수로 불리는 수를 최초로 정의하였다. 오일러는 이 상수를 C 또는 O로 표시했다. 이탈리아의 수학자 로렌초 마스케로니(이탈리아어: Lorenzo Mascheroni)도 1790년 이 수를 언급하였고, A 또는 a라는 기호를 사용하였다.
오일러-마스케로니 상수는 보통 소문자 감마 γ로 표기된다. 이 기호는 오일러나 마스케로니의 저서에는 등장하지 않으나, 이후 이 수가 대문자 감마로 표기되는 감마 함수 Γ와 깊은 관계를 가진다는 사실이 발견되면서 소문자 감마가 사용되게 되었다. 소문자 감마 기호가 사용된 최초의 논문은 1835년에 작성되었고, 1837년 출판되었다.[1]
성질
편집오일러-마스케로니 상수가 유리수인지 여부는 아직 알려져 있지 않다. 연분수 분석에 의해 만약 오일러-마스케로니 상수가 유리수라면 그 분모의 값은 적어도 10242080 이상이라는 것이 알려져 있다.
감마 함수와의 관계
편집감마 함수와는 다음과 같은 관계가 있다.
리만 제타 함수와의 관계
편집리만 제타 함수와는 다음과 같은 관계가 있다.
적분식
편집다음 적분 식으로도 오일러-마스케로니 상수를 얻을 수 있다.
알려진 자릿수
편집레온하르트 오일러는 최초로 이 상수의 값을 소수점 아래 여섯자리까지 연산하였다. 1781년에 그는 소수점 아래 16자리까지 연산하였다. 이탈리아 수학자 로렌초 마스케로니는 소수점 아래 32자리까지의 연산을 시도하였지만 20-22자리와 31-32자리에 오류를 만들었다. 20번째 자릿수부터 시작하여 그는 ...1811209008239을 연산했으나 올바른 자릿수는 ...0651209008240이였다.
일자 | 십진 자릿수 | 발견자 | 비고 |
---|---|---|---|
1734년 | 5 | 레온하르트 오일러 | |
1735년 | 15 | 레온하르트 오일러 | |
1781년 | 16 | 레온하르트 오일러 | |
1790년 | 32 | 로렌초 마스케로니, 소수점 아래 20-22와 31-32 자릿수 오계산 | |
1809년 | 22 | 요한 게오르크 폰 졸트너 | |
1811년 | 22 | 카를 프리드리히 가우스 | |
1812년 | 40 | 프리드리히 베른하르트 고트프리드 니콜라이 | |
1857년 | 34 | 크리스티안 프레드릭 린드만 | |
1861년 | 41 | 루드윅 오팅거 | |
1867년 | 49 | 윌리엄 샹크스 | |
1871년 | 99 | 제임스 위트브레드 리 글레이셔 | |
1871년 | 101 | 윌리엄 샹크스 | |
1877년 | 262 | 존 쿠치 애덤스 | |
1952년 | 328 | 존 렌치 | |
1961년 | 1050 | 헬무트 피셔와 칼 롱인 젤러 | |
1962년 | 1271 | 도널드 커누스 | |
1962년 | 3566 | 듀라 W. 스위니 | |
1973년 | 4879 | 윌리엄 A. 베이어와 마이클 워터먼 | |
1977년 | 20700 | 리차드 P. 브렌트 | |
1980년 | 30100 | 리차드 P. 브렌트와 에드윈 맥밀런 | |
1993년 | 172000 | 조나단 보웨인 | |
1999년 | 108000000 | 페르릭 데미첼과 하비에르 구르동 | |
2009년 3월 13일 | 29844489545 | 알랙산더 J. 리와 래이먼드 찬 | Yee 2011, y-cruncher 2017 |
2013년 12월 22일 | 119377958182 | 알랙산더 J. 리 | Yee 2011, y-cruncher 2017 |
2016년 3월 15일 | 160000000000 | 페터 트뤼프 | y-cruncher 2017 |
2016년 5월 18일 | 250000000000 | 론 왓킨스 | y-cruncher 2017 |
2017년 8월 23일 | 477511832674 | 론 왓킨스 | y-cruncher 2017 |
2020년 5월 26일 | 600000000100 | 김승민과 이언 커트리스[2] | [3] |
같이 보기
편집각주
편집- ↑ Bretschneider, Carl Anton (1837). “Theoriae logarithmi integralis lineamenta nova”. 《Journal für die reine und angewandte Mathematik》 (라틴어) 1837 (17): 257–285. doi:10.1515/crll.1837.17.257. ISSN 0075-4102.
- ↑ Euler–Mascheroni constant world record by Seungmin Kim
- ↑ y-cruncher by Alexander Yee
- Yee, Alexander J. (2011년 3월 7일). “Nagisa - Large Computations”. 《www.numberworld.org》.
- “Records Set by y-cruncher”. 《www.numberworld.org》. 2017년 8월 24일. 2018년 4월 30일에 확인함.
외부 링크
편집- Kudryavtsev, L.D. (2001). “Euler constant”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Euler-Mascheroni constant”. 《Wolfram MathWorld》 (영어). Wolfram Research.