오일러-마스케로니 상수

조화급수를 자연 로그로 근사한 경우의 오차를 나타내는 수학 상수

정수론에서 오일러-마스케로니 상수(-常數, 영어: Euler–Mascheroni constant)는 조화급수자연 로그로 근사한 경우의 오차를 나타내는 수학 상수이다. 줄여서 오일러 상수라고도 불리나, 자연로그의 밑에 해당하는 오일러 수 e=2.718…과는 다르다.

정의

편집

오일러-마스케로니 상수  는 다음과 같은 극한으로 정의된다.

 

그 값은 다음과 같다. (OEIS의 수열 A001620)

0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 …

역사

편집

스위스의 수학자 레온하르트 오일러가 1734년에 〈조화급수에 대한 고찰〉(라틴어: De Progressionibus harmonicis observationes)이라는 논문에서 오늘날 오일러-마스케로니 상수로 불리는 수를 최초로 정의하였다. 오일러는 이 상수C 또는 O로 표시했다. 이탈리아의 수학자 로렌초 마스케로니(이탈리아어: Lorenzo Mascheroni)도 1790년 이 수를 언급하였고, A 또는 a라는 기호를 사용하였다.

오일러-마스케로니 상수는 보통 소문자 감마 γ로 표기된다. 이 기호는 오일러나 마스케로니의 저서에는 등장하지 않으나, 이후 이 수가 대문자 감마로 표기되는 감마 함수 Γ와 깊은 관계를 가진다는 사실이 발견되면서 소문자 감마가 사용되게 되었다. 소문자 감마 기호가 사용된 최초의 논문은 1835년에 작성되었고, 1837년 출판되었다.[1]

성질

편집

오일러-마스케로니 상수가 유리수인지 여부는 아직 알려져 있지 않다. 연분수 분석에 의해 만약 오일러-마스케로니 상수가 유리수라면 그 분모의 값은 적어도 10242080 이상이라는 것이 알려져 있다.

감마 함수와의 관계

편집

감마 함수와는 다음과 같은 관계가 있다.

 

리만 제타 함수와의 관계

편집

리만 제타 함수와는 다음과 같은 관계가 있다.

 

적분식

편집

다음 적분 식으로도 오일러-마스케로니 상수를 얻을 수 있다.

 
 
 

알려진 자릿수

편집

레온하르트 오일러는 최초로 이 상수의 값을 소수점 아래 여섯자리까지 연산하였다. 1781년에 그는 소수점 아래 16자리까지 연산하였다. 이탈리아 수학자 로렌초 마스케로니는 소수점 아래 32자리까지의 연산을 시도하였지만 20-22자리와 31-32자리에 오류를 만들었다. 20번째 자릿수부터 시작하여 그는 ...1811209008239을 연산했으나 올바른 자릿수는 ...0651209008240이였다.

오일러-마스케로니 상수 γ의 알려진 십진 자릿수
일자 십진 자릿수 발견자 비고
1734년 5 레온하르트 오일러
1735년 15 레온하르트 오일러
1781년 16 레온하르트 오일러
1790년 32 로렌초 마스케로니, 소수점 아래 20-22와 31-32 자릿수 오계산
1809년 22 요한 게오르크 폰 졸트너
1811년 22 카를 프리드리히 가우스
1812년 40 프리드리히 베른하르트 고트프리드 니콜라이
1857년 34 크리스티안 프레드릭 린드만
1861년 41 루드윅 오팅거
1867년 49 윌리엄 샹크스
1871년 99 제임스 위트브레드 리 글레이셔
1871년 101 윌리엄 샹크스
1877년 262 존 쿠치 애덤스
1952년 328 존 렌치
1961년 1050 헬무트 피셔와 칼 롱인 젤러
1962년 1271 도널드 커누스
1962년 3566 듀라 W. 스위니
1973년 4879 윌리엄 A. 베이어와 마이클 워터먼
1977년 20700 리차드 P. 브렌트
1980년 30100 리차드 P. 브렌트와 에드윈 맥밀런
1993년 172000 조나단 보웨인
1999년 108000000 페르릭 데미첼과 하비에르 구르동
2009년 3월 13일 29844489545 알랙산더 J. 리와 래이먼드 찬 Yee 2011, y-cruncher 2017
2013년 12월 22일 119377958182 알랙산더 J. 리 Yee 2011, y-cruncher 2017
2016년 3월 15일 160000000000 페터 트뤼프 y-cruncher 2017
2016년 5월 18일 250000000000 론 왓킨스 y-cruncher 2017
2017년 8월 23일 477511832674 론 왓킨스 y-cruncher 2017
2020년 5월 26일 600000000100 김승민과 이언 커트리스[2] [3]

같이 보기

편집

각주

편집
  1. Bretschneider, Carl Anton (1837). “Theoriae logarithmi integralis lineamenta nova”. 《Journal für die reine und angewandte Mathematik》 (라틴어) 1837 (17): 257–285. doi:10.1515/crll.1837.17.257. ISSN 0075-4102. 
  2. Euler–Mascheroni constant world record by Seungmin Kim
  3. y-cruncher by Alexander Yee

외부 링크

편집