완비화 (환론)
환론에서 완비화(完備化, 영어: completion)는 형식적 멱급수를 취하는 연산의 일반화이며, 대략 어떤 양쪽 아이디얼을 형식적 변수처럼 생각하여 이에 대한 형식적 멱급수를 추가하는 연산이다.
정의
편집(곱셈 항등원을 갖는) 환 와 그 양쪽 아이디얼 가 주어졌다고 하자. 그렇다면, 다음과 같은 일련의 몫환들을 정의할 수 있다.
의, 에 대한 완비화 는 이 몫환들의 (환의 범주 에서의) 극한이다.[1]:319 (만약 가 가환환이라면, 이는 가환환의 범주 에서 생각하여도 좋다. 이는 이 의 반사 부분 범주이기 때문이다.) 구체적으로, 이는 다음과 같다.
이에 대하여 자연스러운 환 준동형
가 존재한다.
만약 표준적 환 준동형 가 동형 사상이라면, 가 -완비환(영어: -adically complete ring)이라고 한다.
성질
편집양쪽 아이디얼 에 대한 -완비환 에 대하여, 다음이 성립한다.
예
편집정수환 를 0이 아닌 소 아이디얼 에서 완비화하면 진 정수환 를 얻는다.
체 에 대한 다항식환 을 극대 아이디얼 에서 완비화하면 형식적 거듭제곱 급수환 을 얻는다.
같이 보기
편집각주
편집- ↑ 가 나 다 Lam, Tsit-Yuen (2001). 《A first course in noncommutative rings》. Graduate Texts in Mathematics (영어) 131 2판. Springer-Verlag. doi:10.1007/978-1-4419-8616-0. ISBN 978-0-387-95183-6. ISSN 0072-5285.
- Eisenbud, David (1995). 《Commutative algebra with a view toward algebraic geometry》. Graduate Texts in Mathematics (영어) 150. Springer-Verlag. ISBN 0-387-94268-8. MR 1322960.
외부 링크
편집- “Separable completion of a ring”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Completion of a ring”. 《nLab》 (영어).