피카르-렙셰츠 이론

미분위상수학대수기하학에서 피카르-렙셰츠 이론(영어: Picard–Lefshetz theory)은 복소다양체 위의 정칙함수의 특이점 주위의 모노드로미를 연구하는 이론이다. 모스 이론복소수 버전이라고 생각할 수 있다.

피카르-렙셰츠 공식

편집

복소  차원 연결 복소다양체   위에 정칙함수  가 있다고 하자. 이러한 함수의 특이점 인 점  들이다. 특이점들이 이산 공간을 이루고, 또한 그  들이 서로 다르다고 하자.

일반적으로, 모든  에 대하여  위상동형이다.  인 극한을 취하면,  호몰로지류 가운데 하나가 0으로 축소돼 사라지게 된다 (vanishing cycle). 이러한 호몰로지류는 항상 중간 호몰로지, 즉  차 호몰로지류  임을 보일 수 있다. ( 는 실수  차원이다.)    주위로 작은 원을 그리며 변형시키면, 이에 대한 모노드로미 에 대한 작용으로 표현할 수 있다. 즉, 이 모노드로미기본군   에 대한 작용으로 나타내어진다.

피카르-렙셰츠 공식에 따라서, 이 작용은 다음과 같다.   를 반시계방향으로 도는 폐곡선이라고 하면,

 

이다. 여기서

 

이다.

역사

편집

에밀 피카르솔로몬 렙셰츠의 이름을 땄다. 에밀 피카르와 조르주 시마르(프랑스어: Georges Simart)는 특이점이 2개인 경우를 1897년 다뤘고,[1] 솔로몬 렙셰츠가 임의의 수의 특이점이 있는 경우를 1924년 다뤘다.[2]

각주

편집
  1. Picard, Émile; Georges Simart (1897). 《Théorie des fonctions algébriques de deux variables indépendantes. Tome I》 (프랑스어). Gauthier-Villars et Fils. JFM 28.0327.01. 
  2. Lefschetz, S. (1924). 《L’analysis situs et la géométrie algébrique》. Gauthier-Villars. JFM 50.0663.01. MR 0033557. 

외부 링크

편집