사용자:Eric4266/작업장
수학에서 디리클레 베타 함수(Dirichlet beta function) 혹은 카탈랑 베타 함수(Catalan beta function)는 리만 제타 함수와 밀접한 관련이 있는 특수 함수이다. 디리클레 L-함수의 특수한 경우이다.
정의
편집디리클레 베타 함수는 다음과 같이 정의된다.
혹은 다음과 같이 표현할 수도 있다.
특별한 값
편집- 여기서 는 카탈랑 상수를 의미한다.
0 이상의 정수 k에 대하여 여기서 는 오일러 수를 의미한다.
오일러 수 은 n이 홀수일 때 0이므로 k가 홀수일 때 임을 알 수 있다.
표
편집s | β(s) | OEIS |
---|---|---|
1/5 | 0.5737108471859466493572665 | |
1/4 | 0.5907230564424947318659591 | |
1/3 | 0.6178550888488520660725389 | |
1/2 | 0.6676914571896091766586909 | A195103 |
1 | 0.7853981633974483096156608 | A003881 |
2 | 0.9159655941772190150546035 | A006752 |
3 | 0.9689461462593693804836348 | A153071 |
4 | 0.9889445517411053361084226 | A175572 |
5 | 0.9961578280770880640063194 | A175571 |
6 | 0.9986852222184381354416008 | A175570 |
7 | 0.9995545078905399094963465 | |
8 | 0.9998499902468296563380671 | |
9 | 0.9999496841872200898213589 | |
10 | 0.9999831640261968774055407 |
카탈랑 상수는 외젠 샤를 카탈랑에 의해 정의된 상수로 조합론에서 쓰인다.
정의
편집카탈랑 상수는 다음과 같이 정의된다.
여기서 β 는 디리클레 베타 함수를 의미한다.
카탈랑 상수의 값은 다음과 같다. (OEIS의 수열 A006752)
- G = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 …
카탈랑 상수의 값은 소숫점 아래 천 억 자리까지 계산되었으나 이 수가 유리수인지 여부는 아직 알려져 있지 않다.
표현
편집카탈랑 상수는 적분을 이용하여 다음과 같이 표현된다.
기하학에서, 델토이드(deltoid)는 반지름의 길이가 인 원의 안에서 원주를 따라 반지름의 길이가 인 원이 구를 때, 작은 원의 원주 위에 있는 한 정점이 그리는 곡선으로, 세 개의 뾰족점을 갖는 하이포사이클로이드이다.
방정식
편집델토이드 곡선은 매개변수 방정식으로 다음과 같이 나타내어진다.
여기서 a는 굴리는 원의 반지름이다.
넓이와 둘레
편집델토이드 곡선 내부의 넓이는 이며, 둘레는 16a이다.[1]
같이 보기
편집참고 문헌
편집- ↑ Weisstein, Eric W. "Deltoid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html